25 research outputs found

    Strata, Soma, Psyche: Narrative and the Imagination in the Nineteenth-Century Science of Lyell, Darwin, and Freud

    Get PDF
    My dissertation, “Strata, Soma, Psyche: Narrative and the Imagination in the Nineteenth-Century Science of Lyell, Darwin, and Freud,” contributes new research to the diverse field mapping the intersections of science and literature in the nineteenth century. Although scholars such as Gillian Beer and George Levine have established ties between developments in the natural sciences and the scope of the nineteenth-century novel, there has not been a sustained effort to attend to the narrative structures of the primary texts that most influenced coterminous literary movements of the period. My work thus attends closely to the narrative and imaginative form of scientific writing that attempts to transcend the limits of what can be seen. All three of Charles Lyell’s, Charles Darwin’s, and Sigmund Freud’s discipline-making texts (The Principles of Geology, The Origin of Species, and The Interpretation of Dreams) deal with historical forces whose operations cannot be observed in action, but only through the traces that are left behind. Three long single-author chapters detail how each text reconciles the ambition to establish a new branch of empirical science with the necessity of relying on the imagination to ford the gaps in physical evidence. I provide close readings of these foundational texts, identifying in each the rhetorical systems by which it represents and details what has never been present, and I demonstrate how each author strategically employs methods more conventionally associated with fictional narratives in the pursuit of establishing scientific facts. As a result, my project reframes the dominant concerns of Nineteenth-Century Literature and Science Studies by focusing in on how literary point of view, diversely defined, enables scientific thought to find a language in which to speak

    Dairying, diseases and the evolution of lactase persistence in Europe

    Get PDF
    Update notice Author Correction: Dairying, diseases and the evolution of lactase persistence in Europe (Nature, (2022), 608, 7922, (336-345), 10.1038/s41586-022-05010-7) Nature, Volume 609, Issue 7927, Pages E9, 15 September 2022In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years(1). Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions(2,3). Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectoriesthan uniform selection since the Neolithic period. In the UK Biobank(4,5) cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Role of Myosin II in Glioma Invasion of the Brain

    No full text
    The ability of gliomas to invade the brain limits the efficacy of standard therapies. In this study, we have examined glioma migration in living brain tissue by using two novel in vivo model systems. Within the brain, glioma cells migrate like nontransformed, neural progenitor cells—extending a prominent leading cytoplasmic process followed by a burst of forward movement by the cell body that requires myosin II. In contrast, on a two-dimensional surface, glioma cells migrate more like fibroblasts, and they do not require myosin II to move. To explain this phenomenon, we studied glioma migration through a series of synthetic membranes with defined pore sizes. Our results demonstrate that the A and B isoforms of myosin II are specifically required when a glioma cell has to squeeze through pores smaller than its nuclear diameter. They support a model in which the neural progenitor-like mode of glioma invasion and the requirement for myosin II represent an adaptation needed to move within the brain, which has a submicrometer effective pore size. Furthermore, the absolute requirement for myosin II in brain invasion underscores the importance of this molecular motor as a potential target for new anti-invasive therapies to treat malignant brain tumors

    Mitochondrial trifunctional protein deficiency in human cultured fibroblasts : effects of bezafibrate

    No full text
    Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses. HADHA-deficient fibroblasts showed markedly reduced alpha subunit protein levels together with decreased beta-subunit abundance, exhibited a −86 to −96 % defect in LCHAD activity, and produced large amounts of C14 and C16 hydroxyacylcarnitines. In control fibroblasts, exposure to bezafibrate (400 ΌM for 48 h) increased the abundance of HADHA and HADHB mRNAs, immune-detectable alpha and beta subunit proteins, activities of LCHAD and LCKAT, and stimulated FAO capacities, clearly indicating that MTP is pharmacologically up-regulated by bezafibrate in human fibroblasts. In MTP-deficient patient fibroblasts, which were found markedly FAO-deficient, bezafibrate improved FAO capacities in six of 26 (23 %) cases, including three cell lines heterozygous for the common c1528G > C mutation. Altogether, our results strongly suggest that, due to variable effects of HADHA and HADHB mutations on MTP abundance and residual activity, improvement of MTP deficiency in response to bezafibrate was achieved in a subset of responsive genotypes
    corecore